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DIFFERENTIAL CONSTITUTIVE EQUATIONS

OF INCOMPRESSIBLE MEDIA WITH FINITE DEFORMATIONS

UDC 539.3A. L. Svistkov1 and B. Lauke2

A method is proposed for constructing a system of constitutive equations of an incompressible medium
with nonlinear dissipative properties with finite deformations. A scheme of the mechanical behavior
of a material is used, in which the points are connected by horizontally aligned elastic, viscous, plas-
tic, and transmission elements. The properties of each element of the scheme are described with the
use of known equations of the nonlinear elasticity theory, the theory of nonlinear viscous fluids, and
the theory of plastic flow of the material under conditions of finite deformations of the medium. The
system of constitutive equations is closed by equations that express the relation between the deforma-
tion rate tensor of the material and the deformation rate tensor of the plastic element. Transmission
elements are used to take into account a significant difference between macroscopic deformations of
the material and deformations of elements of the medium at the structural level.

Key words: constitutive equations, finite deformations, elasticity, plasticity, viscosity, incom-
pressible medium, mechanical properties.

Introduction. The viscoelastic behavior and viscous-flow properties of materials with finite deformations
are simulated with the use of models of integral and differential types. In models of the integral type, the history of
medium deformation is taken into account by means of integral equations. It is difficult to extend these equations
to more complicated situations (for instance, for modeling processes of mass transfer in a dissipative medium, which
play the governing role in the technology of production of polymer materials). If damageability and thixotropy of
elastomers are taken into account, integral models become too complicated for application in practice. It seems
more promising to construct differential phenomenological models. These models are simple and convenient for
calculations and identification of constants on the basis of available experimental data and can describe real me-
chanical properties of materials fairly accurately. Apparently, this is the reason for the recently increased interest
to differential models of continuous media with finite deformations.

Differential models usually describe the rheological properties of materials with the use of tensor internal
variables, which are given the physical meaning of stresses [1–5] or strains [6–12]. It is convenient to construct
mathematical models of this type with the use of schemes of the mechanical behavior of the medium. Available
publications, however, do not provide a general theory of constructing differential-type models with arbitrary
connections of elements for media with finite deformations. Such models cannot be obtained by simple generalization
of models for media with small deformations, because the total measure of deformation cannot be presented as a
sum of the measures of deformation of individual elements of the scheme. Equations of the evolution of internal
variables should involve objective derivatives whose choice has to be properly justified.

Rheological models, which have simple interpretations in the form of the Maxwell, Kelvin–Voigt, Pointing–
Thompson, and other schemes, were formulated in [13]. The thermodynamic validity of simple constitutive equations
was discussed in [14, 15]. We believe that Palmov’s idea are of the greatest interest. In the present paper, we use a
similar approach based on additive decomposition of the deformation rate tensor of the medium.

1Institute of Continuous Media Mechanics, Ural Division, Russian Academy of Sciences, Perm’,
614013; svistkov@icmm.ru. 2Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany;
laukeb@ipfdd.de. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 158–170,
May–June, 2009. Original article submitted September 5, 2006; revision submitted February 13, 2008.

0021-8944/09/5003-0493 c© 2009 Springer Science +Business Media, Inc. 493



C

B

D

2 5

6

8

1 4

E

F
73

A G

Fig. 1. One possible scheme of the mechanical behavior of the material: elastic elements (1, 5,
and 6), transmission elements (2 and 3), viscous elements (4 and 7), and a plastic element (8).

A simple method for deriving the constitutive equations is proposed below. Advantages of this method are
the existence of the physical meaning of all mathematical expressions used, the convenience of constructing the
mathematical model of the medium, and the absence of objective derivatives of stress tensors in the constitutive
equations. Numerous methods of connecting the elements in the scheme offer additional possibilities for the devel-
opment of a model that provides a fairly accurate description of the medium behavior with the minimum number
of internal variables.

1. Scheme of the Mechanical Behavior of the Medium and Construction of the System of
Constitutive Equations. To construct the system of constitutive equations of complex media, we propose to use
the scheme of the mechanical behavior of the material. An example of such a scheme is illustrated in Fig. 1. Some
rules that have to be satisfied in constructing the mathematical model of the material are given below:

— the scheme of the mechanical behavior of the medium should consist of points connected by elastic,
viscous, plastic, and transmission elements;

— all elements on the scheme should be aligned horizontally; therefore, we can speak about the left and
right points of the corresponding elements;

— the elements are connected to the left or right point in the scheme and cannot be connected to the top
or bottom point;

— for each point of the scheme, there is a corresponding deformation rate tensor of this point, which plays
the role of a tensor parameter necessary for constructing the mathematical model;

— the Cauchy stress tensor and the deformation rate tensors are assigned to the elastic, viscous, and plastic
elements of the scheme;

— for each transmission element, the Cauchy stress tensors for the left and right points are used.
A specific feature of the approach considered is the fact that it does not involve the notion of deformation

gradients for internal points in the scheme of the mechanical behavior of the medium. In using this approach,
therefore, we cannot speak about multiplicative decomposition of the deformation gradient of the material into
a product of deformation gradients of the scheme elements. A specific feature of this approach is the use of
transmission elements.

In the example considered (see Fig. 1), the scheme of the mechanical behavior of the medium consists of
points A, B, C, D, E, F , and G connected by elastic elements 1, 5, and 6, transmission elements 2 and 3, viscous
elements 4 and 7, and a plastic element 8. Deformation rate tensors with the corresponding subscripts are put into
correspondence to the points in the scheme: DA, DB, DC , DD, DE , DF , and DG. These deformation rate tensors
are used to calculate the deformation rate tensors of elastic, viscous, and plastic elements. The left A and right G

points of the scheme of the mechanical behavior of the medium play an important role. The algorithm of obtaining
the system of constitutive equations is based on using statements given below.

Statement 1. The deformation rate tensor of the left point of the scheme coincides with the deformation
rate tensor of the medium D, and the deformation rate tensor of the right point of the scheme is equal to zero.

Statement 2. The deformation rate tensor of the elastic, viscous, and plastic elements is calculated as the
difference between the deformation rate tensors of the left and right points of these elements.

Statement 3. The trace of any deformation rate tensor used in the model is equal to zero.
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In the example considered, these statements mean that the equalities

DA = D, DG = 0 (1)

should be used in constructing the mathematical model for the left and right points of the scheme,

D1 = DA − DB, D5 = DC − DF , D6 = DD − DE (2)

should be used for the elastic elements, and

D4 = DB − DG, D7 = DE − DF , D8 = DF − DG (3)

should be used for the viscous and plastic elements. The requirements of zero traces of the deformation rate tensors

trD1 = . . . = tr D8 = trDA = . . . = tr DG = 0

is caused by the fact that the constitutive equations are derived for the model of an incompressible medium.
Statement 4. The transmission element is used in the model for changing the deformation rate and cannot

be responsible for energy loss or production. The power of the Cauchy stress tensor T l
k on the deformation rate

tensor Dl
k at the left point of the transmission element with the number k equals the power of the Cauchy stress

tensor T r
k on the deformation rate tensor Dr

k at the right point of this element:

T l
k · Dl

k = T r
k · Dr

k (4)

(the dot means scalar multiplication of nine-dimensional vectors in the nine-dimensional vector space formed by the
set of second-rank tensors).

In accordance with condition (4), the following equalities have to be satisfied in the example considered:

T l
2 · DA = T r

2 · DC , T l
3 · DA = T r

3 · DD. (5)

The model involves the Cauchy stress tensors of the elastic elements T1, T5, and T6, viscous elements T4 and T7,
and plastic element T8, as well as the Cauchy stress tensors of the left points (T l

2 and T l
3) and right points (T r

2 and
T r

3 ) of the transmission elements.
The next step in constructing the system of constitutive equations is the formulation of conditions of com-

patibility of the Cauchy stress tensors. The following statements are used for this purpose.
Statement 5. The Cauchy stress tensor of the medium T is equal to the sum of the Cauchy stress tensors

of the elastic, viscous, and plastic elements and of the left points of the transmission elements connected to the left
point of the scheme.

Statement 6. The sum of the Cauchy stress tensor of the elastic, viscous, and plastic elements and the right
points of the transmission elements connected on the left to an arbitrary internal point of the scheme is equal to the
sum of the Cauchy stress tensors of the elastic, viscous, and plastic elements and the left points of the transmission
elements connected on the right to this point of the scheme.

Using the above-formulated statements for this model (see Fig. 1), we obtain the following dependences.
The Cauchy stress tensor of the material T is equal to the sum of the Cauchy stress tensors of the elastic element
T1 and the Cauchy stress tensors of the left points of the transmission elements T l

2 and T l
3:

T = T1 + T l
2 + T l

3. (6)

The following equalities are valid for the internal points B, C, D, and E:

T1 = T4, T r
2 = T5, T r

3 = T6, T6 = T7. (7)

The point F obeys the condition
T5 + T7 = T8. (8)

2. Mechanical Properties of the Elastic Elements. To describe the mechanical behavior of the
elements in the scheme, we use the known formulas of mechanics. Thus, the mass density of the free energy can be
used to calculate the Cauchy stress tensors in the elastic elements.

Statement 7. The mass density of the free energy of the medium is a function of temperature and stretch
ratios of the elastic elements

f = f(θ, . . . , λi
1, λ

i
2, λ

i
3, . . .),

where θ is the temperature, and λi
1, λi

2, and λi
3 are the stretch ratios of the ith elastic element.
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Statement 8. The deviator of the Cauchy stress tensor of the ith elastic element is calculated by the
formulas of the nonlinear elasticity theory

dev Ti = dev
(
ρ

3∑
k=1

λi
k

∂f

∂λi
k

ni
k ⊗ ni

k

)
, dev ( · ) = ( · ) − 1

3
tr ( · ), (9)

where ρ is the mass density of the medium, and ni
1, ni

2, and ni
3 form an orthogonal triple of eigenvectors of the

stretch tensor Vi = λi
1 ni

1 ⊗ ni
1 + λi

2 ni
2 ⊗ ni

2 + λi
3 ni

3 ⊗ ni
3 of the ith elastic element.

In the example considered (see Fig. 1), the mass density of the free energy f is a function of the temperature
θ and the stretch ratios of the first (λ1

1, λ1
2, and λ1

3), fifth (λ5
1, λ5

2, and λ5
3), and sixth (λ6

1, λ6
2, and λ6

3) elastic
elements. Let us recall that the notions of deformation gradients for individual elements of the scheme are not used
here; therefore, we cannot argue that the stretch tensors V1, V5, and V6 appear as a result of polar decomposition
of the corresponding deformation gradients. It follows from the formulas given below that the stretch tensors V1,
V5, and V6 are symmetric and indifferent. The mass density of the free energy f is used to calculate the Cauchy
stress tensors of the elastic elements T1, T5, and T6.

In further formulas, we use the dots above the symbols to indicate the derivatives of these quantities with
respect to time under the condition that the change in the considered quantities is traced for a fixed particle of the
medium. The dot near the closing bracket has the same meaning of the derivative of the expression in brackets
with respect to time (for a fixed particle of the medium). To finalize the description of the behavior of the elastic
elements, we have to define how the stretch tensors behave with time. We propose the following statement.

Statement 9. For the ith elastic element, the material derivative of the stretch tensor V̇i with respect to
time is calculated by the formula

2
δi

Y 0.5
i DiY

0.5
i = Ẏi − YiW

t
R − WRYi, WR = ṘRt, (10)

where Yi = V
2/δi

i (δi > 0) and R is the rotation tensor in the polar decomposition F = V R of the deformation
gradient of the medium F into the left stretch tensor V and rotation R.

Corollary 1. The known formulas of the theory of nonlinear medium elasticity, which describe the time
variation of the stretch ratios of the ith elastic element,

λ̇i
k = λi

k ni
k ⊗ ni

k · Di, k = 1, 2, 3, (11)

and the rate of work in this element

Ti · Di = ρ

3∑
k=1

∂f

∂λi
k

λ̇i
k (12)

are the consequences of Eq. (10) if the parameter δi is a constant.
Let us prove equality (11). For this purpose, we write Eq. (10) in a more convenient (for analysis) form

2
δi

Di = Y −0.5
i ẎiY

−0.5
i − Y 0.5

i W t
RY −0.5

i − Y −0.5
i WRY 0.5

i . (13)

The left and right sides of Eq. (13) are scalarly multiplied by the expression λi
k ni

k ⊗ ni
k:

λi
k ni

k ⊗ ni
k · 2

δi
Di = λi

k ni
k ⊗ ni

k ·
(
Y −0.5

i ẎiY
−0.5
i − Y 0.5

i W t
RY −0.5

i − Y −0.5
i WRY 0.5

i

)
. (14)

The first term in the right side of Eq. (14) is written with the use of eigenvectors and eigenvalues of the stretch
tensor of the ith elastic element:

λi
k ni

k ⊗ ni
k · Y −0.5

i ẎiY
−0.5
i = λi

kni
k ⊗ ni

k · V −1/δi

i (V 2/δi

i )·V −1/δi

i

= λi
kni

k ⊗ ni
k ·

( 3∑
n=1

(λi
n)−1/δini

n ⊗ ni
n

)( 3∑
j=1

(λi
j)

2/δini
j ⊗ ni

j

)·( 3∑
m=1

(λi
m)−1/δini

m ⊗ ni
m

)
. (15)

With the use of the identity

ni
k ⊗ ni

k · (ni
j ⊗ ni

j)
· ≡ 0
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and the rule of scalar multiplication of second-rank tensors

A · BC = CAt · Bt,

which is valid for arbitrary tensors A, B, and C, we finally obtain the expression

λi
k ni

k ⊗ ni
k · Y −0.5

i ẎiY
−0.5
i = (λi

k)−2/δi+1 ni
k ⊗ ni

k ·
3∑

j=1

2
δi

(λi
j)

2/δi−1λ̇i
j ni

j ⊗ ni
j =

2
δi

λ̇i
k. (16)

We can easily see that the second and third terms in the right side of Eq. (14) are equal to zero. Let us
illustrate it by an example of the second term, which can be simplified by using the rule of scalar multiplication of
second-rank tensors:

−λi
k ni

k ⊗ ni
k · Y 0.5

i W t
RY −0.5

i

= −λi
k ni

k ⊗ ni
k ·

( 3∑
n=1

(λi
n)1/δi ni

n ⊗ ni
n

)
W t

R

( 3∑
m=1

(λi
m)−1/δi ni

m ⊗ ni
m

)
= −λi

k ni
k ⊗ ni

k · W t
R.

As the scalar product of symmetric and antisymmetric tensors is equal to zero, we finally obtain

−λi
k ni

k ⊗ ni
k · Y 0.5

i W t
RY −0.5

i = 0. (17)

Thus, equality (14) with allowance for Eqs. (16) and (17) acquires the form

λi
k ni

k ⊗ ni
k · 2

δi
Di =

2
δi

λ̇i
k,

whence there follows the validity of equality (11).
Expression (12) is proved on the basis of Eq. (11) with the use of the equality

ρ
3∑

k=1

∂f

∂λi
k

λ̇i
k = ρ

3∑
k=1

∂f

∂λi
k

λi
k ni

k ⊗ ni
k · Di.

Condition (9) means that the Cauchy stress tensor of the ith elastic element is calculated by the formula

Ti = piI + ρ

3∑
k=1

λi
k

∂f

∂λi
k

ni
k ⊗ ni

k,

where pi is an indefinite parameter. The trace of the deformation rate tensor of the elastic element is equal to zero:
tr Di = I · Di = 0. The above-presented reasoning allows us to conclude that Eq. (12) is valid.

Corollary 2. In the general case, where the parameters δi can change their values in the course of material
deformation, the rate of time variation of the stretch ratio of the ith elastic element and the rate of work in this
element are found by the formulas

λ̇i
k = λi

k ni
k ⊗ ni

k · Di +
δ̇i

δi
λi

k ln(λi
k),

Ti · Di = ρ

3∑
k=1

∂f

∂λi
k

λ̇i
k − δ̇iρ

δi

3∑
k=1

∂f

∂λi
k

λi
k ln (λi

k).
(18)

It seems reasonable to use the changes in the parameters δi with time to model the growth of damages in
the material. If the values of δi remain unchanged, then the properties of the elastic elements are determined by
the known equations of the theory of nonlinear elastic media (11) and (12). If the material becomes damaged, the
ratio between the macroscopic deformations and structural deformations of the elements is changed, which is taken
into account by the parameters δi. Equality (18) testifies that some part of work performed in the elastic element
is spent on changing the free energy, whereas the other part of work is spent on increasing the medium damage. In
the present paper, we consider incompressible materials only; therefore, we assume that the emergence of damages
should not lead to changes in the medium volume, for instance, in the case of breakdown of aggregates of carbon
black particles in rubber during its deformation. Elastic fibers composed of an oriented polymer are formed between
the parts of the aggregates rather than pores. The medium remains incompressible.
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3. Incompressibility of the Elastic Elements. Let us demonstrate that the condition of incompressibil-
ity of the elastic elements in the scheme of the mechanical behavior of the medium does not contradict the condition
of satisfaction of equality (10). For this purpose, the left and right sides of equality (13) are scalarly multiplied by
the unit tensor I = ni

1 ⊗ ni
1 + ni

2 ⊗ ni
2 + ni

3 ⊗ ni
3. As a result, we obtain

I · 2
δi

Di =
3∑

k=1

ni
k ⊗ ni

k ·
(
Y −0.5

i ẎiY
−0.5
i − Y 0.5

i W t
RY −0.5

i − Y −0.5
i WRY 0.5

i

)
.

The left side of this equality is equal to zero, because the trace of the deformation rate tensor is equal to zero.
Repeating transformations similar to those performed in obtaining Eqs. (14)–(16), we find

0 =
3∑

k=1

(λi
k)−2/δini

k ⊗ ni
k ·

3∑
j=1

( 2
δi

(λi
j)

2/δi−1λ̇i
j −

2(λi
j)

2/δi

δ2
i

δ̇i ln λi
j

)
ni

j ⊗ ni
j

=
2
δi

3∑
j=1

λ̇i
j

λi
j

− 2δ̇i

δi
2

3∑
j=1

ln λi
j =

2
δi

(
ln (λi

1λ
i
2λ

i
3)

)·
− 2δ̇i

δi
2 ln (λi

1λ
i
2λ

i
3).

The solution of this equation is the product λi
1λ

i
2λ

i
3 = 1, which was to be proved.

4. Mechanical Properties of the Viscous and Plastic Elements. The following statements are used
to take into account the properties of viscosity and plasticity.

Statement 10. The deviator of the Cauchy stress tensor of the jth viscous element is calculated by the
formulas of the theory of nonlinear viscous fluid

dev Tj = 2ηjDj, (19)

where the shear viscosity coefficient is a non-negative function of state parameters ηj � 0.
Statement 11. The deviator of the Cauchy stress tensor of the plastic element is calculated by the formulas

of the plastic flow theory

Dn =
√

Dn · Dn

dev Tn · dev Tn
dev Tn, (20)

where n is the number of the plastic element.
For modeling the plastic flow process, it is necessary to exclude the ambiguity in Eq. (20). A mathematical

expression that relates the deformation rate tensor of the plastic element to the deformation rate tensor of the
medium can be used for this purpose.

Statement 12. The specific features of the mechanical behavior of the plastic element are determined
by a proportional dependence between the intensity of the deformation rate tensor of the plastic element and the
intensity of the deformation rate tensor of the medium proper:

√
Dn · Dn = κn

√
D · D .

Here the factor κn is a non-negative function described by the dependence

κn =

{
0, Φn(V, . . .) < gn,

ζ(gn), Φn(V, . . .) = gn.

The fluidity function Φn, which is used to formulate the criterion of evolution of plastic deformations in the medium,
is a function of the stretch tensor V and other state parameters of the medium. Plastic deformation of the medium
occurs if and only if the fluidity function Φn has the maximum value during the entire history of medium existence:

gn = maxΦn(V, . . .).

5. Transmission Elements in the Model. In this paper, we consider isotropic materials; therefore, we
propose to use simple relations between the stress tensors and deformation rate tensors at the left and right points
of the transmission element.

Statement 13. The transmission element in the model serves to increase the deformation rate tensor by a
factor of νk with a corresponding decrease in the Cauchy stress tensor:
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Fig. 2. Illustration to the hypothesis of formation of oriented polymer fibers in the gap between the
neighboring carbon black aggregates during rubber deformation: (a) locations of the neighboring
aggregates at the initial time; (b) formation of oriented fibers owing to slipping of the polymer
chains from the layers into the gap between the aggregates under stretching; (c) whipping of the
fibers after load removal.

Fig. 3. Locations of aggregates of carbon black particles at large deformations of rubber: (a) ini-
tial locations of the aggregates of the filler particles; (b) locations of the aggregates with twofold
elongation of the material specimen; (c) locations of the aggregates with threefold elongation of the
material specimen.

T l
k = νkT r

k , Dl
k =

1
νk

Dr
k

(νk is a non-negative function of the state parameters of the medium and k is the number of the transmission
element).

In the model illustrated in Fig. 1, the transmission elements serve to increase the deformation rate tensors
of the points C and D over the deformation rate tensor of the point A:

DA =
1
ν2

DC , DA =
1
ν3

DD.

The condition of the absence of sources and sinks of energy in the transmission elements (4) is satisfied automatically.
Transmission elements are used in the model for a more accurate description of the processes in real materials.

On one hand, the use of these elements allows a more accurate description of the mechanical behavior of the material;
one the other hand, it becomes possible to understand and quantify the role of the processes at the structural level.
Let us illustrate it by an example of rubber, a nanocomposite capable of elongating by more than a factor of
5 under stretching and returning to a state close to the initial state after the loading is removed. Rubbers are
elastomers filled by carbon black. Carbon black particles have radii between 10 and 20 nm and are united into
aggregates touching each other and forming a rigid skeleton in the elastomer. During deformation, apparently, the
polymer chains slip off from the polymer layers near the filler particles into the gaps between the aggregates, where
high-strength fibers of a uniaxially oriented polymer are formed (Fig. 2). As a result, the macroscopic strength of
elastomers increases by an order of magnitude (as compared with the material without the filler), with simultaneous
growth of deformations at the moment of material rupture.

It should be noted that rubbers are unusual nanocomposites. Methods of self-consistency or methods of
studying the properties on periodic cells are inapplicable to these materials. Large deformations of the material
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Fig. 4. Scheme shown in Fig. 1 under deformation conditions with both the plastic element and
both viscous elements being out of operation (notation the same as in Fig. 1).

lead to significant changes in its structure (Fig. 3). The condition of medium incompressibility can only be fulfilled if
the closely located aggregates of carbon black particles move away from each other in the case of twofold elongation
of the material sample and diverge to extremely large distances in the case of fourfold elongation. The length of
the fibers connecting the aggregates should increase by a factor of several tens thereby (see Fig. 3). The area of
the hatched region remains unchanged. The images of the aggregates of carbon black particles can be arranged in
this region only if the length of the connecting fibers can be substantially increased. Transmission elements in the
model allow us to take into account this behavior of the oriented polymer fibers.

Special attention should be paid to the fact that the equation of the evolution of the left tensor of stretching
of the elastic element Vi is chosen in the form (10). Let us consider the model shown in Fig. 1 in the case where the
viscous and plastic elements are out of operation (Fig. 4), for instance, in the second cycle of material deformation
along a given trajectory with an extremely high rate. All possible plastic deformations already occurred in the first
cycle. The second cycle proceeds within a time period much shorter that the characteristic time of the viscoelastic
process. It can be naturally expected that the medium would behave as a hyperelastic material under these
conditions. Such a situation occurs if the following conditions are used in the model: δ1 = 1, ν2 = δ5, and ν3 = δ6.
Indeed, in accordance with Eq. (10), the behavior of the elastic element 1 in Fig. 4 is consistent with the known
laws of the nonlinear elasticity theory:

2Y 0.5DY 0.5 = Ẏ − Y W t
R − WRY, Y = V 2

1 . (21)

The left stretch tensor of the material V satisfies the same equation:

2V DV = (V 2)· − V 2W t
R − WRV 2.

The evolution of the tensors V and V1 is uniquely determined by the deformation rate tensor D and the spin WR

of the medium, which coincide with the unit tensor in the non-deformed material. These facts allow us to speak
about the equality of V and V1.

Let us study the behavior of the elastic elements 5 and 6. The following dependences are valid for the
transmission elements:

D = D5/ν2, D = D6/ν3.

This means that the equations of the evolution of the stretch tensors have the form (21), but the tensor Y in these
equations is related to V5 and V6 by the dependences

Y = V5
2/ν2 , Y = V6

2/ν3 .

The tensors V5 and V6 in the non-deformed material coincide with the unit tensor. This allows us to conclude that
there exists a functional dependence of the stretch tensors of the elastic elements on the left stretch tensor of the
material:

V1 = V, V5 = V ν2 , V6 = V ν3 .

In the case considered, the viscous and plastic elements are out of operation. Hence, we have a hyperelastic behavior
of the medium whose free energy is uniquely determined by the left stretch tensor of the material. To obtain this
result, we have to choose appropriate values for the parameters δ1, δ5, and δ6.
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6. Verification of the Dissipation Inequality. The constitutive equations of the model should yield the
dissipation inequalities

T · D − ρ(ḟ + sθ̇) − h · grad θ

θ
� 0, (22)

where h is the heat flux and s is the entropy of the material. The temperature gradient is determined in the actual
configuration.

Statement 14. The material entropy s and the heat flux h are calculated by the formulas of nonequilibrium
thermodynamics

s = −∂f

∂θ
, h = −ch grad θ, (23)

where ch > 0 is the thermal conductivity.
Statement 15. The following inequality should be valid for all elastic elements:

δ̇i

( 3∑
k=1

∂f

∂λi
k

λi
k ln (λi

k)
)

� 0. (24)

Let us prove the validity of inequality (22) for a material whose mechanical behavior is determined by the
scheme shown in Fig. 1. The proof for any other material is similar. Let us decompose the scalar product T · D
using Eqs. (1), (2), (5), and (6) and applying some obvious transformations:

T · D = (T1 + T l
2 + T l

3) · D = T1 · D + T r
2 · DC + T r

3 · DD

= T1 · (DA − DB) + T1 · DB + T r
2 · (DC − DF ) + T r

2 · DF + T r
3 · (DD − DE) + T r

3 · DE

= T1 · D1 + T1 · DB + T r
2 · D5 + T r

2 · DF + T r
3 · D6 + T r

3 · DE .

After further simplification with the use of Eqs. (1), (3), (7), and (8), we obtain

T · D = T1 · D1 + T1 · DB + T5 · D5 + T5 · DF + T6 · D6 + T7 · DE

= T1 · D1 + T4 · DB + T5 · D5 + T5 · DF + T6 · D6 + T7 · (DE − DF ) + T7 · DF

= T1 · D1 + T4 · D4 + T5 · D5 + T5 · D8 + T6 · D6 + T7 · D7 + T7 · D8 = T1 · D1 +
8∑

k=4

Tk · Dk.

Thus, the power of stresses acting in the medium is equal to the sum of the powers of stresses in each element of the
scheme of the mechanical behavior of the medium, except for the transmission elements. As a result, the dissipation
inequality (22) acquires the form

T1 · D1 +
8∑

k=4

Tk · Dk − ρ(ḟ + sθ̇) − h · grad θ

θ
� 0. (25)

In the example considered, the density of the free energy of the material is a function of temperature and
stretch ratios of the elastic elements:

f = f(θ, λ1
1, λ

1
2, λ

1
3, λ

5
1, λ

5
2, λ

5
3, λ

6
1, λ

6
2, λ

6
3).

Taking into account Eqs. (18) and (23), we substitute into inequality (25) the value of the material derivative of
the density of the free energy

ḟ =
∂f

∂θ
θ̇ +

∑
k=1,5,6

3∑
i=1

∂f

∂λk
i

λ̇k
i .
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As a result, we obtain the constraint

∑
n=4,7,8

Tn · Dn −
∑

i=1,5,6

3∑
k=1

δ̇iρ

δi

∂f

∂λi
k

λi
k ln (λi

k) +
ch grad θ · grad θ

θ
� 0.

Using the properties of the viscous element (19) and plastic element (20), we transform this constraint to

∑
n=4,7

Tn · dev Tn

2ηn
+ T8 ·

√
D8 · D8

dev T8 · dev T8
dev T8 −

∑
i=1,5,6

3∑
k=1

δ̇iρ

δi

∂f

∂λi
k

λi
k ln (λi

k) +
chgrad θ · grad θ

θ
� 0.

Using the identity

A · dev A = dev A · dev A,

we write the dissipation inequality in the final form:

∑
n=4,7

1
2ηn

dev Tn · dev Tn +
√

D8 · D8

dev T8 · dev T8
dev T8 · dev T8

−
∑

i=1,5,6

3∑
k=1

δ̇iρ

δi

( 3∑
k=1

∂f

∂λi
k

λi
k ln (λi

k)
)

+
ch grad θ · grad θ

θ
� 0.

As the shear viscosities ηn, the parameters δi, and the thermal conductivity ch are positive, the dissipation inequality
is valid for all elastic elements under constraints (24). Inequalities (24) have the following physical meaning: the
change in the parameters δi should occur only in one direction determined by Eqs. (24). The damage of the material
can be only increasing.

This work was supported by the Department of Education and Nature Management of the Perm’ Region
and by the Russian Foundation for Basic Research (Grant No. 07-08-96017).
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